星欧娱乐资讯
NEWS
2025年5月16日,第一家依托MEMS质谱技术发展各类质谱仪器的工业质谱制造商微谱科技(湖州)有限公司成立开业,聚焦解决工业各细分领域的气体组分在线分析及泄漏检测等问题,提升企业生产效能和现场安全。
微谱科技(湖州)有限公司WESPEC TECHNOLOGIES CO., LTD. 开业盛典暨新品发布会璀璨启幕。该公司
聚焦解决工业各细分领域的气体组分在线分析及泄漏检测等问题,提升企业生产效能和现场安全,为千行百业提供高性价比的国产质谱技术解决方案,让实验室仪器进入工业现场,真正践行“让高端仪器飞入寻常百姓家”的理念!MEMS质谱技术是一种基于微电子机械系统(MEMS)的小型化质谱分析技术,具有体积小、成本低、高灵敏度等优点,可广泛应用于深海等极端环境监测、食品安全、医疗健康和新能源工业等领域,当前国外众多知名科研机构与公司已经布局MEMS质谱技术研究,国内起步较晚,中科院合肥物质院MEMS质谱——下一代小型质谱技术项目团队是国内最早布局该技术的团队,并在不同领域积累了大量合作伙伴。接下来,带大家一起回顾MEMS质谱技术的研究进展,供稿为中科院合肥物质科学研究院程玉鹏。
要捋清MEMS质谱技术的发展那就不得不先从质谱的小型化发展开始说起。自上世纪末开始,质谱仪器的小型化逐渐成为了一个非常热门的研究方向。到现在经过20多年的发展,基本逐个解决了质量分析器、离子源、进样技术及真空系统等在小型化过程中遇到的问题。到目前为止,大部分类型的质谱仪均在不同程度上实现了小型化,而且市场上已经存在大量离子阱、飞行时间、四极杆等较为成熟的小型质谱仪器可供选择。这些小型质谱的基本特点通常是单人可以携带或自由挪动,可依靠电池连续工作若干小时,省去了样品大部分或者所有的前处理工作,基本胜任简单场景的定性和半定量分析,等等。基于这些特点,小型质谱仪器的主要应用是在实验室之外的现场分析,比如人流枢纽的安全筛查、执法取证、环境检测、食品药品监管,甚至是医疗诊断等领域。可以说小型质谱的发展大大伸展了质谱的触角,让质谱走出实验室,走向样品成为了现实。
众多国内外大学、研究机构和商业公司都在持续推动小型质谱技术的进步和商业化,相信未来10年质谱的小型化仍会是最热门的发展方向之一。
但目前看来小型化质谱的进一步发展仍存在一些未解决的问题,这些问题基本可以分成两个方面,
。前者是为了不断向实验室仪器的性能看齐,尤其是现在的定量和重现性都是需要解决的问题;而后者是持续的小型化。
目前实现质谱小型化主要有三种方式:一是逼近传统机械加工技术的极限,将核心器件按比例缩小;二是3D打印等基于增材制造的快速成型技术;三是基于MEMS微细加工技术。当前大部分小型化质谱采用的是第一种方法,仪器的综合指标与小型化之间可以实现比较好的妥协和平衡。然而此类基于传统机械加工的小型化质谱看上去已经进入了瓶颈期,尤其是受到真空泵的限制,很难再进一步降低质谱的重量、体积、功耗和成本。手持质谱基本是目前基于传统机械加工技术能实现的极限水平。
简单地说,基于MEMS技术进行设计和制造的质谱即为MEMS质谱。尽管其尚未发展成熟,但已经展现出了极大的想象空间。尤其是基于MEMS开发的众多nano-ESI(纳升电喷雾)芯片已经被广泛用于生物医药研发和组学研究等领域,产生了极大的应用价值。Nano-ESI之所以首当其冲,发展迅速,一方面是受到应用端对低样本量消耗、高灵敏度检测等迫切需求的驱动,另一方面则得益于ESI的灵敏度依赖于样品浓度而非样品流量的独特性质。因此,即使nano-ESI的流量下降至纳升水平其灵敏度仍不逊色于常规ESI。而且ESI芯片易于和LC(液相色谱)、CE(毛细管电泳)等各种微流控技术进行单片集成,极大提高了分析性能,简化了工作流程。所以说ESI和MEMS的结合可谓是天作之合。不过由于ESI大多情况是针对液态样品,所以当前几乎都是搭配在常规质谱仪器上使用,尚未用于MEMS质谱。Advion BioSciences公司开发的纳升喷雾芯片技术ESI Chip
TM是最具代表性的纳升喷雾产品之一,集成了400个微米尺度的纳升喷雾单元,提高了分析通量和灵敏度。
质量分析器是质谱仪器的核心,不仅直接影响最终分析性能,还是小型化发展的主要推动力。可以说质谱的小型化进程最初就是从质量分析器的小型化开始的。质量分析器进行小型化的同时,又带动了电路和真空等子系统的小型化,因此推动了整机的小型化。尤其是离子阱质量分析器对高气压耐受性比较高,简化模型的结构非常简单,因此一直以来都是小型化研究的热点。美国桑迪亚国家实验室(Sandia National Lab)基于PECVD(等离子增强化学
沉积)和钨大马士革工艺在25mm2的芯片上制作了一百万个内径1μm的离子阱阵列。十多年前,笔者在中科大读研期间刚开始接触质谱研发工作,研究方向就是MEMS离子阱质量分析器,当时提出了平板线型离子阱结构。据我们所知,这也是国内最早开始的MEMS质谱相关技术的研究。
R等加工困难亦或是工作条件要求苛刻的质量分析器之外,大部分的质量分析器包括四极杆、飞行时间、磁质谱、Wien滤质器等都已经实现了MEMS化。值得一提的是上世纪末提出的一种基于MEMS的四极杆质量分析器,经过10多年的发展和完善,终于在2011年由Microsaic Systems公司商业化,用于其小型化质谱MiD系列产品,实现了和常规质谱接近的性能。然而令人遗憾的是,尽管其离子源、真空接口、质量分析器等都基于MEMS技术开发,但最终整机仍然类似当前小型质谱的形态。
真空泵是阻碍MEMS质谱真正实现最重要的因素之一。正如我们所知,在传统质谱仪器中,在体积、重量、成本、功耗等诸多方面,真空泵都是“主力担当”。而当前可以用于小型质谱的真空泵种类极为有限,在小型质谱市场未产生足够的经济规模之前,真空泵生产商几乎没有动力去推动微型真空泵的开发和推广。正所谓,巧妇难为无米之炊。真空泵已然成为了小型化质谱进一步发展的主要瓶颈。幸运地是,大量基于MEMS技术的微型真空泵取得了令人兴奋的进展。2008年,有现实版神盾局之称的美国国防部高级研究计划局(DARPA)推出了一项名为CSVMP的研发计划旨在推动芯片级微型真空泵技术的发展,该项目要求线的线μP的线瓦,还要求集成精确测量气压的线年,DARPA宣布来自密歇根大学、麻省理工学院和霍尼韦尔公司的三个研究团队分别完成了三种芯片级微型真空泵的基础研究。
Pa,且可以维持此真空度几小时。目前,已经有大量基于不同原理的MEMS微泵、微真空规、微阀门、微进样器件等被开发出来,其性能不断提高的同时,多器件的单片集成技术也在持续发展中。相信在未来的MEMS质谱中,真空泵的将不会复现限制微型化发展的瓶颈地位。
MEMS质谱技术不仅进一步缩小了离子光学系统、真空系统等关键部件的尺寸,还使得各部件的直接装配变得更加简单,减少了冗余设计,极大地提高了集成度。目前,离子源、质量分析器、检测器、进样技术、真空规以及真空泵在内的各关键MEMS质谱器件都已经取得了令人振奋的进展,单片集成了几乎所有离子光学器件的MEMS质谱芯片也已经被陆续开发出来。尽管当前的性能由于尺寸缩小造成灵敏度和分辨率等性能的下降,与传统质谱技术相比仍存在一定差距,但是在残余气体分析、过程监控、环境监测、POCT、极端环境原位探测、突发事件应对等领域仍表现出了极大的应用价值。
真正意义上的MEMS质谱仪器尚未问世,但各个关键技术已经在不断成熟,一个令人耳目一新的单片集成了大部分甚至所有核心组件的MEMS质谱模块/仪器不久的将来就在眼前,“飞入寻常百姓家”的梦想亦会成为现实。到那时,传统质谱仪器的内核全部都会被封装到类似集成电路芯片的质谱芯片中。和所有电路芯片一样,质谱芯片只是一种特殊的传感芯片,一个PCB基的微型质谱仪器或质谱传感器将成为现实。
正如智能手机没有取代超级计算机一样,MEMS质谱亦不可能取代传统质谱,尤其是高端质谱,也难以企及传统质谱的性能,但毫无疑问其必将会开辟一片更广阔的空间。我们已经看到了智能手机、新能源汽车、数字经济、5G通信等众多产业在技术升级换代过程中产生的翻天覆地的变化。
同样,MEMS质谱亦将是革命性的技术,其必将极大改变质谱行业未来的发展格局。当前正值国产质谱仪器快速发展的时机,我们应当未雨绸缪及早布局MEMS质谱技术的基础研究,在下一轮质谱技术迭代来临之前做好储备,这是一次让国产质谱不再受制于人的绝佳机会。
打造生物化工研究与制造创新联合体 万华化学与广州生物岛实验室举行签约仪式